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1 Introduction

1.1 Aims and Motivation

Theorem 1.1. [3, p 107][Generalized Stoke’s Theorem (Stokes-Cartan Theorem)] Take ω to be
a (n − 1)-form with compact support and let it be smooth. Then let ω be on an n-dimensional
manifold M , which has a boundary, denoted ∂M (given the induced orientation). Then we have
that ∫

M

dω =

∫
∂M

ω.

This essay will aim to build up the mathematical tools to fully understand this statement and
prove the theorem. Furthermore, many applications will be explored of the theorem. Stoke’s
Theorem was communicated from Lord Kelvin to George Stokes by letter in 1850 and led to
Stokes setting it for the Smith’s Prize exam in 1854 [12] (which is why it is named after himself).
In 1861, a simple version of the theorem that was published by Hermann Hankel [6] (Generalized

1



Stoke’s Theorem in lower dimensions). In 1945, Élie Cartan formulated the modern version of
the theorem (Theorem 1.1) [14].

Last Year, in Modelling 2, it was suggested that the Fundamental Theorem of Calculus 2,
(Classical) Stoke’s Theorem, Divergence Theorem and Green’s Theorem could all be derived
from Generalized Stoke’s Theorem [2, p. 90]. This was intriguing and through proving the
theorem, this essay will intend to show all can be derived from it. Generalized Stoke’s Theorem
is considered to be one of the most elegant theorems in mathematics and is used in many fields
of mathematics including analysis, topology, and geometry. The theorem applies few conditions
and is fundamental (generalises for all situations, rather than special cases) so it is a major
building block for other theorems.

1.2 The Theorems

Firstly, let’s state 4 theorems, which we want to derive from Generalized Stoke’s Theorem. In
Year 1, we saw these formulae before but, took them for granted as, they were never proved
(except that we proved the Fundamental Theorem of Calculus 2 using Riemann integration
techniques but, a different proof will be offered here). It’s important to notice how they mirror
Generalized Stoke’s Theorem, in the fact 1 side of the equation has a 1 less dimension that it is
integrating over.

Theorem 1.2 (Green’s Theorem). [2, p. 73] Consider an area D which is bounded by a curve
C. If we have that this curve is closed, simple and oriented then for any two-variable functions
P, Q that have continuous partial derivatives on D, we have that∫∫

D

∂Q

∂x
− ∂P

∂y
dxdy =

∮
C
(Pdx+Qdy).

Theorem 1.3 ((Classical) Stoke’s Theorem). [2, p. 76] We consider the vector field F , which
is a function in R3. Let S be a surface with unit normal n̂ and boundary curve C oriented
positively, then ∫∫

S
curlF · n̂dS =

∫
C
F · dr.

Here, curlF = ∇× F (where ∇ is the divergence operator) and this is the classical version of
Generalized Stoke’s Theorem published by Hankel.

Theorem 1.4 (Divergence Theorem). [2, p. 85] We let n̂ be a unit normal vector to a surface S
and additionally, we require that this vector points outwards. Take F to be a vector field (again
in 3 variables). Let V be a finite volume in R3 and S is its (closed) surface. Furthermore if F
was differentiable then: ∫∫∫

V
∇ · FdV =

∫∫
S
F · n̂dS.

Theorem 1.5 (Fundamental Theorem of Calculus 2). [1, p. 80] Take F to be a real-valued
function on [a, b], which we know that it is continuous on [a, b] and differentiable on (a, b). We
let F ′ = f and we see that ∫ b

a
f(t)dt = F (b)− F (a),

which only holds if we have that f is integrable on [a, b].

Now, before we start trying to understand Generalized Stoke’s Theorem, we will see how
Green’s Theorem is a simpler case of (Classical) Stoke’s Theorem therefore, eliminating 1 the-
orem from the work to do later.

Proposition 1.6. Green’s Theorem can be derived from (Classical) Stoke’s Theorem
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Proof. Let F = (P,Q, 0), where P = P (x, y) and Q = Q(x, y) and the curve C has a surface of
D such that:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
P Q 0

∣∣∣∣∣∣ =
 0

0
Qx − Py

 .

Since, this surface is reduced to 2 dimensions (z component is 0), then a unit normal vector is

n̂ =
(

0
0
1

)
.

(1) The Left Hand Side of Stoke’s Theorem:∫∫
D

(
0
0

Qx−Py

)
·
(

0
0
1

)
dxdy =

∫∫
D

∂Q

∂x
− ∂P

∂y
dxdy.

(2) The Right Hand Side of Stoke’s Theorem:∫
C

(
P
Q
0

)
·
(

dx
dy
dz

)
=

∫
C
(Pdx+Qdy).

The right and left side now correspond to the result which we wanted to prove, therefore
in the verification proof that will come in Chapter 6, showing (Classical) Stoke’s Theorem is
enough to get Green’s Theorem.

2 Building up tools

This section is very important for understanding differential forms as tensors are needed to un-
derstand wedge products, which are in turn needed to understand differential forms. This section
is presented in a different way that tensors are presented in Multi-Linear Algebra (MA266), with
more proofs and different intuition. After tensors and wedge products are understood, we can
define differential forms and exterior derivatives.

2.1 Tensors

Definition 2.1. A multi-linear function is a function in which each separate variable is linear.

Example 2.1. Assume f is a multi-linear function, consider f(3x + 2y, y − z, z). We can use
the linearity of each separate variable to reduce this expression to 3f(x, y−z, z)+2f(y, y−z, z)
and again to get 3f(x, y, z)− 3f(x, z, z) + 2f(y, y, z)− 2f(y, z, z).

Definition 2.2. [5, p. 153] Take Z to be a vector space then for k ∈ N, then we define the
k-tensor of Z to be a function on Zk (this is the Cartesian product), which is real-valued and
multi-linear. We also require that Z is finite dimensional. For this, the rank of the tensor is
k. Since Z is a vector space we can assume linearity and scalar multiplication properties of
tensors.

Definition 2.3. Tm(Z) is the set of rank m tensors of Z

Definition 2.4. [11, p. 75] Take Z from above and let A be a rank f tensor and B be a rank
g tensor. The tensor product is defined by A⊗B ∈ T f+g(Z) such that:

(A⊗B)(z1, . . . , zf , zf+1, . . . , zf+g) = A(z1, . . . , zf ) ·B(zf+1, . . . , zf+g)

.

Proposition 2.1. The tensor product is distributive, A⊗ (B1 +B2) = A⊗B1 +A⊗B2.
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Proof. In this proof we just going to do a routine expansion of terms to get the result we want.
Let A have rank f and, B1 and B2 have rank g. Then we see that:

(A⊗ (B1 +B2))(z1, . . . , zf+g) = A(z1, . . . , zf ) · (B1 +B2)(zf+1, . . . , zf+g)

= A(z1, . . . , zf ) · (B1(zf+1, . . . , zf+g) +B2(zf+1, . . . , zf+g))

= (A⊗B1 +A⊗B2)(z1, . . . , zf , . . . , zf+g).

Proposition 2.2. The tensor product is associative.

Proof. Likewise, in this proof we just going to do a routine expansion of terms to get the result
we want. Let A have rank f , let B have rank g and C have rank h. Then we see that:

((A⊗B)⊗ C) (z1, . . . , zf+g+h) = (A(z1, . . . , zf ) ·B(zf+1, . . . , zf+g)) · C(zf+g+1, . . . , zf+g+h)

= A(z1, . . . , zf ) · (B(zf+1, . . . , zf+g) · C(zf+g+1, . . . , zf+g+h))

= (A⊗ (B ⊗ C)) (z1, . . . , zf+g+h).

Definition 2.5. [11, p. 78] Tensors are alternating if in the domain (the Cartesian product),
when we interchange 2 zi and zj , where i ̸= j, then the output of the tensor is the negative value
of what it was. [8, p. 314] We call a tensor that is equal, when 2 components are interchanged
symmetric.

Definition 2.6. [5, p. 155] Let X ∈ T p(Z) then:

(AltX)(z1, . . . , zp) =
1

p!

∑
σ∈Sp

(sgnσ)X(zσ(1), . . . , zσ(p))

and it is an alternating tensor, where Sp is the symmetric group defined in Algebra 1.

Proposition 2.3. AltX is an alternating tensor such that [AltX]ϕ = sgn(ϕ)AltX, where
[AltX]ϕ is AltX with permutation ϕ applied to it.

Proof. Let X ∈ T p(Z). In this proof we just apply a random permutation to (AltX) and then
consider the composition of the 2 permutations (the other being that used in the definition of
(AltX)) as 1 permutation to derive the result. Firstly, we can see that

[(AltX)(z1, . . . , zp)]
ϕ =

1

p!

∑
σ∈Sp

(sgnσ)X(zϕ(σ(1)), . . . , zϕ(σ(p))),

and we know sgn(ϕ ◦ σ) = sgn(ϕ) sgn(σ). Therefore, can insert sgn(ϕ) twice as sgn(ϕ)2 = 1 and
set τ = ϕ ◦ σ, with τ ∈ Sp. We can now show

[(AltX)(z1, . . . , zp)]
ϕ =

1

p!
sgn(ϕ)

∑
σ∈Sp

(sgn(ϕ ◦ σ))X(zϕ(σ(1)), . . . , zϕ(σ(p)))

=
1

p!
sgn(ϕ)

∑
σ∈Sp

(sgn τ)X(zτ(1), . . . , zτ(p))

= sgn(ϕ)AltX(z1, . . . , zp),

as τ becomes a dummy-variable in the series. Now if ϕ is a transposition (swapping vi and vj),
then sgn(ϕ) = −1 due to a transposition being odd, therefore showing AltX is an alternating
tensor.
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2.2 Wedge Products

We now define wedge product from our understanding of tensors.

Definition 2.7. [8, p. 355] Let A ∈ T f (Z) and B ∈ T g(Z) then the wedge product defined by:

A ∧B =
(f + g)!

f !g!
Alt(A⊗B).

Proposition 2.4. Let A,B and C be tensors. Wedge products have associativity property (A ∧
B)∧C = A∧ (B ∧C) and anti-commutativity property A∧B = (−1)fgB ∧A (if A was chosen
to have rank f and B rank g).

The above proposition is easy to prove as they are just routine verifications and very similar
to the proofs provided for tensor products. The key step to the proof of the anti-commutativity
property is that we already know that AltX is an alternating tensor. These are left as an
exercise for the reader. We use these properties a lot and they are crucial to understanding
differential forms. The combination of these 2 properties will become powerful in the proof of
Generalized Stoke’s Theorem.

2.3 Forms

Definition 2.8. [8, p. 351] Let k ∈ N and consider positive integers ij for j ∈ {1, . . . , p}. A
multi-index of length p is a p-tuple I = (i1, . . . , ip). If I is a multi-index and σ ∈ Sp, then
Iσ = (iσ(1), . . . , iσ(p)).

Definition 2.9. [4, p 157] A differential p-form is just the sum:

ω =
∑
i1···ip

ωi1,...,ipdx
i1 ∧ · · · ∧ dxip .

We have that ωi1···ip ∈ C∞(U) (smooth functions from U) and indices 1 ≤ i1 < · · · < ip ≤ m.
The differential form is on an open subset of Rm here. With the former notation, we can write
this as w =

∑
I wIdx

I with I = (i1, . . . , ip) being an index set and dxI = dxi1 ∧ · · · ∧ dxip and
wi1···ik = wI . Here, dx

i means the ith coordinate, not x to the power of i.

Definition 2.10. [4, p 158] Let Ωp(U) be the vector space (with addition and scalar multipli-
cation) of p-forms on U . Define the exterior derivative to be a map d : Ωp(U) → Ωp+1(U) such
that:

d

(∑
I

wIdx
I

)
=

p∑
i=1

∑
I

δwI

δxi
dxi ∧ dxI .

Proposition 2.5. The exterior derivative has the property d(a+ b) = da+ db, for every a, b ∈
Ωm.

Proof. Let a =
∑

I aIdx
I and b =

∑
I bIdx

I , then we see that:

d(a+ b) = d

(∑
I

(aI + bI)dx
I

)

=

(∑
I

d(aI + bI) ∧ dxI

)

=

(∑
I

(daI + dbI) ∧ dxI

)

=

(∑
I

daI ∧ dxI + dbI ∧ dxI

)
= da+ db
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Proposition 2.6. [4, p 158] The exterior derivatives has the property d ◦d = 0 hence, ddω = 0
for every ω ∈ Ωm.

Proof. If we apply the definition twice then:

ddω =

m∑
j=1

m∑
i=1

∑
I

∂2wI

∂xj∂xi
dxj ∧ dxi ∧ dxI .

Since, dxi ∧ dxj = −dxj ∧ dxi and we know mixed derivative are equal so the coefficients in
front of dxi ∧ dxj and dxj ∧ dxi are equal. Therefore, the terms cancel out (due to 1 being the
negative of the other) leading to 0.

The proofs above were easy enough as they were just routine expansions but the power we
have unlocked from these propositions is immense. These properties will be used time and time
again during the proof of Generalized Stoke’s Theorem.

3 Manifolds

Manifolds are one of the most useful constructs in all of mathematics. The use of a manifold is
to generalise surfaces and curves into higher dimensions. We think of a manifold as a topological
space that locally can be seen as a Euclidean space near each point and this gives us tools to use
on them that we already have built up (a more formal definition is offered below). This property
of being locally Euclidean can be described as every point having a neighbourhood (this will be
defined as a chart) which is homeomorphic to an open subset of Rn. These coordinate charts can
be worked with to allow us to get properties over manifolds which we want such as differentiation,
tangent spaces and differential forms being able to be built up. This section will build up the
tools to understand these concepts and will be crucial in understanding Generalized Stoke’s
Theorem. In addition, this essay will assume knowledge from Norms, Metrics and Topologies
(MA260) such as: a topology, support of a function (denoted supp), a neighbourhood, covers,
connectedness, homeomorphisms, compact sets, closure and a boundary.

3.1 Introduction to Manifolds

Definition 3.1. A p-dimensional manifold (p-manifold) is a topological space with the property
that each point has a neighbourhood that is homeomorphic to an open subset of Rp.

Example 3.1. 1-manifolds include lines and circles and 2-manifolds include planes, spheres,
and toruses. Something interesting is that our intuition on 3-manifolds is limited to just a
theoretical level where, we can use them in equations. What this means is that, we are not sure
what 3-manifolds actually look like for example, some people theorise it could be the shape of
the universe.

Example 3.2. The simplest type of manifold is a topological manifold. We say that a topo-
logical space with a basis (that is made up of a countable set of subsets) is second-countable
[9]. A manifold that locally resembles a p-dimensional Euclidean space is topological (denoted
Mp) if it is both Hausdorff and second-countable [10, p. 35]. Other types of manifolds include
differentiable manifolds and smooth manifolds.
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3.2 Definitions

This section is dense containing lots of important definitions used throughout the essay. We
build on the notion of smooth maps in the next subsection when looking at smooth manifolds.
In Multi-variable Analysis (MA263), we defined a smooth map so we will quickly define it, then
go onto diffeomorphisms from it.

Definition 3.2. [4, p. 19] Consider a function G : A → B, where it is smooth if we can infinitely
differentiate it. This for A an open subset of Rp and B an open subset of Rq. This means we
are allowed to differentiate to get the nth derivative for any n ∈ N. The set all smooth functions
from A to B is denoted C∞(A,B)

Definition 3.3. [4, p. 19] G : A → B is smooth and it is a diffeomorphism if it is bijective (this
implies that is invertible) and G−1 : B → A is smooth (here p = q).

Example 3.3. A simple example of a diffeomorphism is f(x) = x, which is infinitely differen-
tiable and self-inverting. Another example is f(x) = x3 + x, since f ′(x) = 3x2 + 1, f is strictly
increasing and therefore, it is injective. Furthermore, as x → ±∞, f(x) → ±∞ so it is surjective
hence, it is a bijection. Clearly, this is infinitely differentiable too. Using the inverse function
theorem, we can see this is a diffeomorphism.

Now we want a way to express the fact that at each point there exists a neighbourhood that
is homeomorphic to an open subset of a Euclidean space. To do this we create a pair consisting
of a map and the neighbourhood.

Definition 3.4. [4, p. 20] A p-dimensional coordinate chart is a collection of a chart domain
(Q) and a coordinate map (ϕ). It is represented as (Q,ϕ) and on the set M , the coordinate
map is defined by ϕ : Q → Rp and it is a bijection if restricted from Q to ϕ(Q).

Definition 3.5. [4, p. 20] Two charts are compatible if we can construct a specific diffeo-
morphism between the coordinate maps. Take (Q,ϕ) and (R, σ) that are compatible, then
σ ◦ ϕ−1 : ϕ(Q ∩ R) → σ(Q ∩ R) is diffeomorphism, where ϕ(Q ∩ R) and σ(Q ∩ R) were open
subsets of their respective chart domains. We call these maps the transition maps. Furthermore,
if Q ∩R = ∅ then it is always compatible.

Charts on their own are not that useful, we want to make a notion that relates the charts
on a manifold together.

Definition 3.6. [4, p. 22] Take M to be a set. An atlas that acts on M is a collection of charts
that satisfy 2 properties: the chart domains cover M and each chart in the atlas is compatible
to every other chart in it. We denote an atlas by A = {(Qα, ϕα)}, where A is an atlas on M .

3.3 Smooth Manifolds

The importance of atlases is that we can now consider a structure that covers the manifold and
work with it to derive properties we wish the manifold to have.

Definition 3.7. [3, p. 5] A smooth atlas is an atlas, where the notion of a function being smooth
on a manifold is known. A function g : M → R is smooth if g ◦ϕ−1 is a smooth real-valued map
for all charts (the input) inside our atlas. 2 smooth atlases here are compatible if the transition
map, suggested in Definition 3.5, is smooth for all charts in the atlas.

A smooth manifold is a topological manifold in which differentiation is possible. Every
smooth manifold is a topological manifold but the converse isn’t true.
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Definition 3.8. [3, p. 5] A smooth manifold is a manifold with a smooth structure, which is
a structure on M defined by the equivalence classes of smooth atlases that act on M . The
smooth structure ensures that for 2 atlases representing these equivalence classes, their union is
also a smooth atlas. This means it has a C∞-differentiable structure in which we can infinitely
differentiate due to the smoothness.

This definition is too formal and a bit confusing, the main take away here is that on a
smooth manifold, we have ensured that there is differentiation at each point.

Definition 3.9. [3, p. 105] To define the boundary of this smooth manifold we consider a chart
where the coordinate map instead maps to Hp = {(x1, . . . , xp) : xp ≥ 0}, where the boundary
is the smooth atlas of the chart domains and coordinate maps. Furthermore, we require that
the transition maps are diffeomorphisms and these maps are between open sets of Hp as the
domain is Hp.

Example 3.4. The most basic example of a smooth manifold is Rp. Another includes, the
2p-dimensional vector space Cp, the complex p-space.

Now, we have a notion of what manifolds are and the smoothness property they possess.
Furthermore, we know what the boundary of a manifold is too now. To understand Generalized
Stoke’s Theorem we need to combine Chapter 2 and 3 in order to get a notion of integration
using these concepts.

4 Tools for Integration

4.1 Orientation

This is very important section as orientation must be considered when integrating over mani-
folds. Orientation here is analogous to orientation of bases defined in Algebra 2, where there
were 2 orientations (used for parallelepipeds). This section is brief, as for Generalized Stoke’s
Theorem an appreciation of orientation and just being considerate is enough. If we were to
formally define orientation we would build upon tangent spaces learnt about in Multi-variable
Analysis (MA263) and assign an orientation to each point in the tangent space.

Definition 4.1. [13, p 240] A manifold is orientable if it has an orientation. There are only 2
possible orientations of a manifold that is both orientated and connected.

4.2 Integrating Forms

The final concept we must explore before we tackle the proof of Generalized Stoke’s Theorem.
We write a slightly easier way to visualise forms and then introduce integration over it. We
simplify our definition of a differential form then we integrate over open sets, charts and then
manifolds.

Definition 4.2. [4, p 193] Let ω be a form that has the highest degree possible (in Rm this is
m) that is on U which is an open subset of Rm. The differential can be written as:

ω = fdx1 ∧ · · · ∧ dxm,

where f ∈ C∞(U).

This definition was powerful as in further calculations we going to use this definition as we
are going to be working with top degree forms (this means that the degree of the form is the
same as the dimension of the space we are integrating over).
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Definition 4.3. [4, p 193] If supp(f) (this is a short hand for the support of f , the region in
it isn’t 0) is compact (bounded and closed), then we define the integral over manifolds of forms
as: ∫

U
w =

∫
Rm

f(x1, . . . , xm)dx1 · · · dxm,

where U is defined in Definition 4.2.
This definition considered the whole of Rm as integration over Rm\U is 0 due to the compact

support, therefore adding 0 onto the integral we want does not matter.

Definition 4.4. [13, p 265] Take a p-form ω which is on U , such that it has a compact support,
where this U is defined to be the chart domain of a chart (U, ϕ) and this is from an atlas of M (a
manifold with dimension p). If we take the coordinate map ϕ as defined in the chart definition
but restrict the domain to ϕ(U), then we gain a bijection and this is also a diffeomorphism. Now
we can see that we have defined a new p-form, which is (ϕ−1)ω and this has compact support
on ϕ(U). One can view this is as us constructing a differential form that acts on the image of U
under the coordinate map. Now we can define integration over a chart domain of a differential
form as: ∫

ϕ(U)
(ϕ−1)ω =

∫
U
ω

Proposition 4.1. [13, p 265] Definition 4.4 is well-defined.

Proof. To prove the definition is well-defined we must get 2 different charts (with the same
chart domain but different coordinate map) and show the result is the same. Let (U, σ) be a
chart in the atlas with the same U , then ϕ ◦ σ−1 : σ(U) → ϕ(U) is a diffeomorphism. Then we
see that: ∫

ϕ(U)
(ϕ−1)ω =

∫
σ(U)

(ϕ ◦ σ−1)(ϕ−1)ω =

∫
σ(U)

(σ−1)ω,

the integration of ω over a chart is well-defined and independent of choice of coordinate chart
over U .

We now define partition of unities, which allow us to build a global object on manifolds,
rather than local ones.

Definition 4.5. [3, p. 21] A partition of unity on a smooth manifold M is the set of smooth
functions {ρi}, such that the functions act on M and i ∈ I for the multi-index I. We also
require that these functions satisfy 3 conditions: they must all be greater than 0, they sum to 1
and the collection of the functions’ supports are locally finite. The locally finite property means
that if we take a point in M and consider a neighbourhood around it, then it only meets the
support of a finite amount of these functions. This further implies in this neighbourhood the
sum of the functions is indeed finite.

Definition 4.6. [3, p. 21] As in the previous definition, we take {ρi} as our partition of unity
satisfying those conditions. There is an open cover of M , which is union of some open sets Vj .
The partition of unity is subordinate to the open cover if for all i ∈ I there is some j such that
the support of the function ρi is contained within Vj .

Now we want to use partitions of unity in order to integrate over manifolds as we now have
a global structure, [13, p 265]. For a partition of unity {ρi} subordinate to the open cover {Vi},
we can give ω compact support and by the definition of partition of unity, it is locally finite
(there are finitely many ρiω that are non-zero). Then we know that ω =

∑
i ρiω is a finite sum

(by definition) and we know that supp(ρiω) is compact (this is due to it being finite and ω had
compact support). We can now work with the n-form ρiω that has compact support in the
chart Vi. The integration is well-defined (any partition of unity yields the same result) over a
manifold using these ideas and given below.
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Definition 4.7. [13, p 265] We can define the integration of ω over manifold M to be the finite
sum: ∫

M
ω =

∑
i

∫
Vi

ρiω.

Lemma 4.2. [13, p 266] Integrating a form over the same manifold but now given opposite
orientation to before, will cause the integral to be the negative of what it was.

5 The Proof

Now, with all the tools built up in previous sections, the proof of Generalized Stoke’s Theorem
(Theorem 1.1) will be presented. The proof shows that Generalized Stoke’s Theorem works
if it works for 2 special cases, which are then explored. This proof is based on the proofs
given in Loring W. Tu’s, “An Introduction to Manifolds” [13, p 269–270] and John M. Lee’s,
“Introduction to Smooth Manifolds” [8, p. 411–413]. The general claim is from Tu’s book
and the 2 specific cases are from Lee’s book. We follow the same steps for specific parts of
each proof but the proof offered here will give explanations for every single step and tie the
proofs together into a concise proof of Generalized Stoke’s Theorem. Both proofs in the books,
left out explanation and a lot was assumed of the reader so here it will be explained fully.
In addition, the reader can draw parallels to the proof of Green’s Theorem in Multi-variable
Analysis (MA263) as a similar approach to the proof is done here.

Proof. Consider the atlas {(Uα, ϕα)}, where Uα is diffeomorphic to either Hn or Rn. We take
the partition of unity {ρα} such that it satisifies the properties in Defintion 4.5, furthermore we
require that it is subordinate to {Uα}. We take a (n− 1)-form ραω such that supp(ραω) ⊂ Uα.
We can claim that if the theorem holds for just the cases M = Hn and M = Rn, then it holds
for all charts in the atlas, which are diffeomorphic to either one of them. Furthermore, we know
that (∂M) ∩ Uα = (∂Uα). Then we have that:∫

∂M
w =

∫
∂M

∑
α

ραω =
∑
α

∫
∂M

ραω

=
∑
α

∫
∂Uα

ραω =
∑
α

∫
Uα

d(ραω)

=
∑
α

∫
M

d(ραω) =

∫
M

d

(∑
α

ραω

)

=

∫
M

dw.

Most of the things used in my explanation here are from Definition 4.5 and 4.6 for the partition
of unity. This integration follows from the fact that firstly, the sum of partitions of unity is
equal to 1 so can be inserted into the integral. Then we use the fact that this sum is finite
so, we can freely swap the sum and integral. Then we reduce what we are integrating over as
supp(ραω) is contained in Uα as, ραω has compact support in it. Then Generalized Stoke’s
Theorem was assumed to hold so we can use it and we also use the fact that supp(d(ρα)) ⊂ Uα

to get to integrating over a manifold. Finally, we again use the fact that the sum is finite to get
the result we desired. Therefore, it suffices to prove the theorem for Hn and Rn.

Suppose M is the upper half-space Hn. We can chose some real number R > 0 such that
supp(ω) ⊂ B = [−R,R]n−1 × [0, R] due to the fact we defined ω to have compact support. We
know that outside this region ω is 0 (we can only do this as the support is compact). Now,
using Definition 4.2 we are going to write ω in terms of a smooth function and wedge products
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such that:

ω =
n∑

i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · dxn,

and we have a hat above dxi as it is omitted. This is because we are just using the usual form
formula but we have a (n− 1)-form on a n-manifold, so we can eliminate 1 exterior derivative
(but we don’t know which we removed so it’s a sum). Then we can see that:

dω =

n∑
i=1

dfi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn

=

n∑
i=1

n∑
j=1

∂fi
∂xj

dxj ∧ dx1 ∧ · · · d̂xi ∧ · · · ∧ dxn

=
n∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxn.

Firstly we just apply a derivative to each side. Then we substitute in the definition of an
exterior derivative in place of dfi, producing a double sum. However, now from Proposition 2.6,
we know the a exterior derivative applied to itself is 0, hence every term of the sum over j is
0 except for when j = i as dxi was chosen to be omitted. Finally the (−1)i−1 term appears
when reordering dxi so the exterior derivatives are in numerical order. This is because wedge
products obey Proposition 2.4 so if dxi is moved an odd number of times to be in place there
is a negative sign. Now we consider the integral of dω over the half-space:∫

Hn

dω =

n∑
i=1

(−1)i−1

∫
B

∂fi
∂xi

dx1 ∧ · · · ∧ dxi

=
n∑

i=1

(−1)i−1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂fi
∂xi

dx1 · · · dxn.

We assume this obeys nice properties meaning summation and integration can be swapped.
We can rearrange the order of integration and substitute in what B was, using the Cartesian
product we defined and can get rid of the wedge products, seen in Definition 4.3. The reason we
are integrating over B is that the suppω is contained in it (the rest of Hn when integrated over
would be 0). Now we consider for xi terms such that i ̸= n and we can apply the Fundamental
Theorem Calculus here to get:

n−1∑
i=1

(−1)i−1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂fi
∂xi

dx1 · · · dxn

=
n−1∑
i=1

(−1)i−1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂fi
∂xi

dxidx1 · · · d̂xi · · · dxn

=

n−1∑
i=1

(−1)i−1

∫ R

0

∫ −R

R
· · ·
∫ −R

R
fi

∣∣∣xi=R

xi=−R
dx1 · · · d̂xi · · · dxn = 0.

The sum decreased from summing to n to summing to n−1 as we can considering all the values
of i ̸= n. We are going to integrate over dxi first, therefore in the product of other exterior

derivatives we put d̂xi to show it is now omitted there. We can use the Fundamental Theorem
Calculus as ω is continuous and differentiable and the partial derivative is integrable. We then
get bounds for fi(x), but we can chose R large enough so it lies outside the support meaning ω
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here evaluates to 0 when xi = ±R. Therefore, the result of the integration here is just 0. Now
we have to check whether for i = n it is 0 or something else. We see that:∫

Hn

dω = (−1)i−1

∫ R

−R
· · ·
∫ R

−R

∫ R

0

∂fn
∂xn

(x)dxndx1 · · · dxn−1

= (−1)i−1

∫ R

−R
· · ·
∫ R

−R
fn(x)

∣∣∣xn=R

xn=0
dx1 · · · dxn−1

= (−1)i−1

∫ R

−R
· · ·
∫ R

−R
fn(x

1, . . . , xn−1, 0)dx1 · · · dxn−1.

We omit d̂xn as it is obvious we removed it. We try the same integral again, remembering
Fubini’s Theorem (Analysis 3) can be applied to do the integral over dxn first. Here we again
use the Fundamental Theorem of Calculus and choose R large enough such that fn = 0 when
xn = R. The difference here is one of the limits is 0 so we get a value of fn here, hence the
result is non-zero. Therefore, the results calculated for i = n is what the left side of Generalized
Stoke’s Theorem is equal to here.

The case where M = Rn, supp(ω) ⊂ B = [−R,R]n. The same computation above gives us
that all terms vanish (including when i = n as now the lower boundary of the integral isn’t 0,
it is −R) so, the left side of Generalized Stoke’s Theorem is 0.

Now, we need to look at the other side of the Generalized Stoke’s Theorem, to find that:∫
∂Hn

ω =
∑
i

∫
B∩∂Hn

fi(x
1, . . . , xn−1, 0)dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn.

We know that on ∂Hn that xn vanishes (as the boundary is the same of as Hn but the nth

coordinate is 0) and it’s derivative here is also zero. From earlier, we know for i ̸= n it goes to
0 so consider i = n, leading to:∫

∂Hn

ω =

∫
B∩∂Hn

fi(x
1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1.

The coordinates (x1, . . . , xn−1) are positively orientated on ∂Hn when n is even and negatively
orientated when n is odd. We can assign orientations to ±1 as on connected manifolds there
are only 2 orientations. The expression becomes:∫

∂Hn

ω = (−1)n−1

∫ R

−R
· · ·
∫ R

−R
fi(x

1, . . . , xn−1, 0)dx1 · · · dxn−1.

Therefore,
∫
Hn dw =

∫
∂Hn ω so it is true for M as the upper-half space.

For M = Rn it has a empty-boundary (by definition) so the right side of Generalized Stoke’s
Theorem is 0 too, therefore both sides of the equation are equal. Hence, it is also true for M as
Rn.

6 Linking back to the motivation

6.1 Deriving the Theorems

Theorem 6.1. All the theorems listed in Chapter 1 can be derived from Generalized Stoke’s
Theorem.

Proof. This proof uses ideas from Feldman, Rechnitzer and Yeager’s ”CLP-4 Vector Calcus” [7,
p 256-260].

Firstly, lets establish some basic properties about integrating with differential forms and
these properties were proved in Modelling 2 [2] (without the notion of a form).
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� [2, p 71] Let ω = F (r) = F1dx+F2dy+F3dz be a 1-form. Let C be a curve parametrised
by r(t) then we have that: ∫

C
ω =

∫
C
F · dr. (1)

� [2, p 83] Let ω = F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy be a 2-form. Let S be an orientated
surface that is parametrised by r(t) = (x(u, v), y(u, v), z(u, v)) such that n̂dS = + ∂r

∂u ×
∂r
∂vdudv (correct orientation). Then we see that:∫

S
ω =

∫∫
S
F · n̂dS. (2)

� This equation wasn’t in Modelling 2 but it is an obvious application of what this essay
has discussed about forms. Let ω = Fdx ∧ dy ∧ dz be a 3-form and let V be a volume in
R3, then: ∫

V
ω =

∫∫∫
V
Fdxdydz. (3)

Firstly, we will prove the Fundamental Theorem of Calculus 2. Here, we have that M = [a, b] (a
1-dimensional manifold) with the 0-form ω on M . Clearly the boundary is just 2 points, ∂M =
{a, b}. A 0-form is a just a function F (x). We have that F ′ = f therefore, dF = fdx. Also,
f is Riemann integrable due to Generalised Stoke’s Theorem. Now, lets plug into Generalized
Stoke’s Theorem: ∫ b

a
f(x)dx =

∫
{a,b}

F (x).

The manifold [a,b] is orientable and it is connected (learnt in Norms, Metrics and Topologies)
therefore there can only be 2 orientations are on it. Since, the manifold [a, b] is orientated going
left to right, we use the fact that orientation is induced onto the boundary to conclude that a
has negative orientation of −1 and b has positive orientation of +1. Therefore,

∫
{a,b} F (x) =

F (b)− F (a).
Secondly, we will prove (Classical) Stoke’s Theorem. Here, we have that the manifold, a 2-

dimensional surface, S and the boundary is a positively oriented curve, C, which has dimension
of 1. A 1-form, ω can be expressed as F1dx+ F2dy + F3dz. We can now calculate the exterior
derivative:

dω = d(F1dx+ F2dy + F3dz)

= dF1 ∧ dx+ dF2 ∧ dy + dF3 ∧ dz

=

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dx+

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dy

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dz

=

(
∂F3

∂y
− ∂F2

∂z

)
dy ∧ dz +

(
∂F1

∂z
− ∂F3

∂x

)
dz ∧ dx+

(
∂F2

∂x
− ∂F1

∂y

)
dx ∧ dy

= (∇× F )1dy ∧ dz + (∇× F )2dz ∧ dx+ (∇× F )3dx ∧ dy.

Now, we can use 1 for the right-side of Generalized Stoke’s Theorem. We can also now use 2
but with F replaced with ∇× F for the left-side of Generalized Stoke’s Theorem. This yields
the result: ∫∫

S
∇× F · n̂ =

∫∫
S
curlF · n̂ =

∫
C
F · dr.
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Finally, lets verify the Divergence Theorem. Here, we have that the manifold is a 3-
dimensional volume, V and the boundary S is a closed surface. A 2-form, ω can be expressed
as F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy. We can now calculate the exterior derivative:

dω = dF1 ∧ dy ∧ dz + dF1 ∧ dy ∧ dz + dF1 ∧ dy ∧ dz

=

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dy ∧ dz +

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dz ∧ dx

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dx ∧ dy

=

(
∂F1

∂x
dx+

∂F2

∂y
dy +

∂F3

∂z
dz

)
dx ∧ dy ∧ dz

= ∇ · Fdx ∧ dy ∧ dz.

This simplified nicely due to Proposition 2.6. Now, we can use 2 for the right-side of Generalized
Stoke’s Theorem. We can also now use 3 but with f = ∇ · F for the left-side of Generalized
Stoke’s Theorem. This yields the result:∫∫∫

V
∇ · F =

∫∫
S
F · n̂.

Since, we did a proof of Proposition 1.6 (verifying Green’s Theorem) we are done.

6.2 Conclusion

In conclusion, Generalized Stoke’s Theorem is one of the most important theorems in
mathematics as it relates different dimensions in such a simple equation. Even though, it took
a lot of effort to fully unpack the statement and get to a proof, the benefits of doing this are
enormous as we can finally verify theorems we had been taking for granted since Year 1.
These theorems have big implications in physics such as Stoke’s Theorem being used in
electromagnetism for example Maxwell’s equations and Divergence Theorem being used for
the change of density of fluids.
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